
XPLORATION FALL ‘98 13

What is XML? Here’s what some industry publi-
cations say about it: “XML will automate the
Web,” “XML Stakes Out Web Future Right

through HTML’s Heart,” and “You need to start think-
ing about XML because a year from now you’ll undoubt-
edly be using it a lot.” Curious? Good. But just what do
you need to know?

First, XML is eXtensible Markup Language. It is an
instance of SGML—one of the family of architectures
which comprises the SGML family. OK, so what’s SGML?
SGML is the Standard Generalized Markup Language
(ISO 8879), the international standard for defining descrip-
tions of the structure and content of different types of elec-
tronic documents. In other words, SGML is not a language
itself but a way of defining a language so that it can accu-
rately communicate information in a document— as well as
communicate information about the information.

Industries and enterprises come together and set stan-
dards for common definitions within the SGML architec-

ture. Since this means that each industry creates its own
set of definitions, SGML is neither tied to nor dependent
on one particular environment.

The Difference Between SGML And Print Data
Over the past 20 years, there have been many presen-

tation datastreams. Line data—Xerox’s Metacode, IBM’s
AFP, Adobe’s PostScript and PDF, Hewlett-Packard’s
PCL—all use data with the same basic goal: presentation.
When we print or display data in one of these formats, we
specify presentation information: an X and Y location, a
font, an orientation, and some text or data.

The foundation for SGML is quite different. In an
SGML language, each piece of data is tagged with a
description of the data’s purpose. SGML makes it possible
to not only present data itself but also the meaning of the
data (the author’s content) at the same time.

An SGML document is the synthesis of three things:
• A Document Type Definition (DTD)

Taming the Web with XML
by William J. “Bill” McCalpin, EDPP, CDIA, MIT, LIT

XPLORATION FALL ‘98 14

• A Stylesheet
• Tagged Data

The DTD
The DTD describes the types of tags allowed in a doc-

ument as well as the order in which they may appear. The
DTD validates the names of the tags as well as the order of
the tags which appear in a document. This makes it possi-
ble for all parties in a large project to guarantee that the
data passed between them will always be mutually under-
standable. It is a table which can be used to syntax-check
the document. Over the years, a variety of groups have
agreed on hundreds of DTDs.

This sample DTD describes which
tags (e.g., <page>) are allowed. The
DTD states that a document consists of
a heading (<head>) and a body
(<body>). The DTD states that the body
has zero or more pages, and each page
contains a mixture of paragraphs (p),
examples (ex), and unordered lists (ul).

But tags aren’t limited to grammatical constructs like
headings or paragraphs. The DTD could define tags like
<Part-Number> or <Exchange-Rate>. Each piece of data
in a datastream could be explicitly tagged with its pur-
pose, as we will see below.

The Stylesheet
The stylesheet describes how the corresponding tag is

formatted. For example, Microsoft’s Word for Windows
uses styles to format parts of a document. You might
define a normal paragraph as Arial, normal, US English,
flush left, line spacing single, widow/orphan control. But
you could also create a style called check-number and give
it the same formatting. In other words, formatting can be
totally divorced from author’s content.

The XML FAQ (Frequently Asked Questions) main-
tained by Web Consortium’s XML Special Interest Group
(see www.w3c.org) says this about formatting: “A new
Extensible Style Language (XSL) is being proposed for
use specifically with XML. This uses XML syntax (a
stylesheet is actually an XML file) and combines format-
ting features from both DSSSL (the SGML standard) and
CSS (HTML) and has already attracted support from sev-
eral major vendors.”

Tagged Data
The tagged data is your document,

in which every piece of data is tagged,
using tags defined in the DTD and the
stylesheet.

Why Isn’t HTML Good Enough?
HTML is an instance of SGML.

However, HTML doesn’t have a DTD,
or, more accurately, has only one DTD that is unchange-
able. Since HTML could not be extended, Web power-

houses Netscape and Microsoft added tags to enhance
their browsers. These tags were incompatible with com-
petitive offerings and led to a situation of mass confusion
as Web developers were forced (for a short while) to back
a single browser when developing their Web pages.

Furthermore, HTML is often poorly implemented.
For example, end tags are not always required, null tags
are not clearly marked, and so on. This is as much the
fault of the specification as of Web page developers. This
means that Web browsers require a huge amount of code
to guess what the HTML was supposed to represent.

The Value of XML
XML, on the other hand, is simpler

to implement—the spec is less than 40
pages. Despite this simplicity, XML has
fully separated format from content.
Unlike HTML, XML is a full-featured
SGML implementation, minus the diffi-
cult-to-use features that were not all
that necessary for the ordinary business

environment anyway. The phrase used in the industry is
that XML is more like SGML-- than like HTML++.

Valid Versus Well-Formed XML
There are two types of XML documents: valid and

well-formed. A valid XML document is exactly the same
as any valid SGML document—all the tags are defined in
the DTD, they appear in an appropriate order, there are
corresponding end tags for all begin tags, and so on. This
will be the normal type of XML document used for elec-
tronic information exchange.

A well-formed XML document includes properly con-
structed tags, but there is no DTD associated with it. This is
similar to HTML and permits a simpler process in building
an XML page when the content of the page is not critical.

Why Is XML Important To Me?
Web pages can have an amazing variety of things hap-

pening. Besides the underlying page itself there maybe
three-dimensional spinning objects, marquees scrolling
across the bottom, you name it! And what is the purpose
of all this activity? To attract your eye.

But how many Web sites can you reasonably ever
expect to see? Only a fraction—and each day you’re
falling farther and farther behind.

In the future, you’ll find what you
need on the Internet through the use of
intelligent agents. Intelligent agents, or
know-bots, are software engines which
browse the Internet looking for the
information. These products will grow
to be far more sophisticated than just
search engines. They will be able to read
Web pages just as you do—in human

language. XML is an integral part of making these intelli-
gent agents effective.

Sample of tagged data:
<document><head>This is a sample
document using tagged data</head>
<body><page>
<p>This is text in a paragraph</p>
<ex>This is an example of some-
thing</ex>
</page></body></document>

Simple sample of a DTD:
<!element document (head, body)>
<!element head (#PCDATA)>
<!element body (page)>
<!element page (p | ex | ul)*>
<!element p (#PCDATA)>
<!element ex (#PCDATA)>
<!element ul (#PCDATA)>

XPLORATION FALL ‘98 15

Think about all the flash and trash on Web sites—the
scrolling text, the audio, the spinning icons. To the intel-
ligent agents, this is just background noise—simply an
obstacle to getting to the real information. In the future,
we’ll print information for two audiences: human readers
and machine readers. We’ll be concerned with formatting
for the human and with tagging for the computer.

Let’s say that your job is to print bank statements. To
present the bank statement on the Internet, you could
translate your print data (AFP, Metacode, PCL, etc.) to
HTML. For your human reader, this is adequate.

Shortly, however, your human reader will want PC
software to read the bank statement and import and store
data. The software which reads your statement could care
less about the format, but wants to understand the mean-
ing, that is, the author’s content.

The following shows a simple bank statement. In it, we
see check numbers, dates, and amounts.
Account Number: 1234567890
Checks Date Amount
——— ———— ————
100 01/01/98 123.00
101 01/02/98 234.12
102 01/11/98 500.00
Current Balance 4,345.00

In a presentation datastream, we would see the data
something like this:
X, Y, font, orientation, Account Number
X, Y, font, orientation, 1234567890
X, Y, font, orientation, Checks Date Amount
X, Y, font, orientation, —— —— ———
X, Y, font, orientation, 100 01/02/98 123.00
X, Y, font, orientation, 101 01/02/98 234.12
X, Y, font, orientation, 102 01/11/98 500.00
X, Y, font, orientation, Current Balance 4,345.00

Of course, this print
data does not have to be
in this order. For exam-
ple, the fifth record
(100 01/02/98 123.00)
could actually be three
different records, each
with its own X and Y
address. And since this is
true, there’s no reason
to assume that the data
value 100 will be found
in the data before the
date value but after the text string Checks. You can’t
really predict anything at all about the order of print
data which makes it problematic for software to under-
stand which data are which.

In the XML example above, we can clearly see what
the purpose of string 100 is - it’s a check number,

because it follows the XML tag <check-number>. This is
easy to determine no matter where the string 100 appears
on the page or what it appears next to in the print data.

XML: The Future Is Here
The sort of data exchange enabled by XML is already

happening today. OFX (Open Financial Exchange)—the
format used by Intuit Quicken and Microsoft Money to
talk to banks, and CML (Chemical Markup Language)—
which exchanges information on chemical formulas—are
just two applications in use today.

We will continue to generate print streams for paper
printing and archiving. In the short run, we will see
software which enables the conversion of legacy print
streams to XML. In the long run, we will create the
XML directly and create legacy print streams from XML
as needed for paper.

William J. “Bill” McCalpin, EDPP, is senior architect for The Xenos
Group, a software vendor and systems integrator based in Toronto,
Ontario. Bill has been active in Xplor since 1986 and is currently an asso-
ciate editor of Xploration. He can be reached at billm@xenosgroup.com.

XML Resources
• www.w3c.org — the
official World Wide
Web Consortium site
(you’ll find links to the
XML spec here). As
you research this site,
you will see the name
of Tim Bray, one of the
members of the com-

mittee who developed
the XML specification.
• www.developer.netscape.com/viewsource/bray_
xml.html. Here you’ll find an excellent (and brief) dis-
cussion of XML by Bray. In addition, there are other ref-
erences to SGML both at the w3c Web site as well as
www.oasis-open.org/cover/sgml-xml.html.

Bank Statement in XML:
<statement><january><text>Account Number:</text><account-num-
ber>1234567890</account-number><heading-text>Checks</heading-
text><heading-text>Date</heading-text><heading-text>Amount</head-
ing-text><underscore>———</underscore><underscore>————
</underscore><underscore>————</underscore><check-num-
ber>100</check-number><check-date>01/01/98</check-date><check-
amt>123.00</check-amt><check-number>101</check-number><check-
date>01/02/98</check-date><check-amt>234.12</check-amt><check-
number>102</check-number><check-date>01/11/98</check-
date><check-amt>500.00</check-amt><total-text>Current Balance</total-
text><total-bal>4,345.00</total-bal></january></statement>

